
11

Finding generators and discrete logarithms in Z∗p

As we have seen in Theorem 9.16, for a prime p, Z∗p is a cyclic group of order
p − 1. This means that there exists a generator γ ∈ Z∗p, such that for all
α ∈ Z∗p, α can be written uniquely as α = γx, where x is an integer with
0 ≤ x < p − 1; the integer x is called the discrete logarithm of α to the
base γ, and is denoted logγ α.

This chapter discusses some computational problems in this setting;
namely, how to efficiently find a generator γ, and given γ and α, how to
compute logγ α.

More generally, if γ generates a subgroup G of Z∗p of order q, where q |
(p − 1), and α ∈ G, then logγ α is defined to be the unique integer x with
0 ≤ x < q and α = γx. In some situations it is more convenient to view
logγ α as an element of Zq. Also for x ∈ Zq, with x = [a]q, one may write γx

to denote γa. There can be no confusion, since if x = [a′]q, then γa′ = γa.
However, in this chapter, we shall view logγ α as an integer.

Although we work in the group Z∗p, all of the algorithms discussed in this
chapter trivially generalize to any finite cyclic group that has a suitably
compact representation of group elements and an efficient algorithm for
performing the group operation on these representations.

11.1 Finding a generator for Z∗p
There is no efficient algorithm known for this problem, unless the prime
factorization of p − 1 is given, and even then, we must resort to the use of
a probabilistic algorithm. Of course, factoring in general is believed to be a
very difficult problem, so it may not be easy to get the prime factorization
of p− 1. However, if our goal is to construct a large prime p, together with
a generator for Z∗p, then we may use Algorithm RFN in §7.7 to generate a
random factored number n in some range, test n+ 1 for primality, and then

268



11.1 Finding a generator for Z∗
p 269

repeat until we get a factored number n such that p = n + 1 is prime. In
this way, we can generate a random prime p in a given range along with the
factorization of p− 1.

We now present an efficient probabilistic algorithm that takes as input an
odd prime p, along with the prime factorization

p− 1 =
r∏

i=1

qei
i ,

and outputs a generator for Z∗p. It runs as follows:

for i← 1 to r do
repeat

choose α ∈ Z∗p at random
compute β ← α(p−1)/qi

until β 6= 1

γi ← α(p−1)/q
ei
i

γ ←
∏r

i=1 γi

output γ

First, let us analyze the correctness of this algorithm. When the ith loop
iteration terminates, by construction, we have

γ
q

ei
i

i = 1 but γ
q

ei−1
i

i 6= 1.

It follows (see Theorem 8.37) that γi has multiplicative order qei
i . From this,

it follows (see Theorem 8.38) that γ has multiplicative order p− 1.
Thus, we have shown that if the algorithm terminates, its output is always

correct.
Let us now analyze the running time of this algorithm. Consider the

repeat/until loop in the ith iteration of the outer loop, for i = 1, . . . , r, and
let Xi be the random variable whose value is the number of iterations of
this repeat/until loop. Since α is chosen at random from Z∗p, the value of
β is uniformly distributed over the image of the (p − 1)/qi-power map (see
Exercise 8.22), and since the latter is a subgroup of Z∗p of order qi, we see
that β = 1 with probability 1/qi. Thus, Xi has a geometric distribution with
associated success probability 1−1/qi, and therefore, E[Xi] = 1/(1−1/qi) ≤
2. Set X := X1 + · · · + Xr. Note that E[X] = E[X1] + · · · + E[Xr] ≤ 2r.
The running time T of the entire algorithm is O(X · len(p)3), and hence
the expected running is E[T ] = O(r len(p)3), and since r ≤ log2 p, we have
E[T ] = O(len(p)4).



270 Finding generators and discrete logarithms in Z∗
p

Although this algorithm is quite practical, there are asymptotically faster
algorithms for this problem (see Exercise 11.2).

Exercise 11.1. Suppose we are not given the prime factorization of p− 1,
but rather, just a prime q dividing p − 1, and we want to find an element
of multiplicative order q in Z∗p. Design and analyze an efficient algorithm to
do this.

Exercise 11.2. Suppose we are given a prime p, along with the prime
factorization p− 1 =

∏r
i=1 q

ei
i .

(a) If, in addition, we are given α ∈ Z∗p, show how to compute the mul-
tiplicative order of α in time O(r len(p)3). Hint: use Exercise 8.25.

(b) Improve the running time bound to O(len(r) len(p)3). Hint: use Ex-
ercise 3.30.

(c) Modifying the algorithm you developed for part (b), show how to
construct a generator for Z∗p in expected time O(len(r) len(p)3).

Exercise 11.3. Suppose we are given a positive integer n, along with its
prime factorization n = pe1

1 · · · per
r , and that for each i = 1, . . . , r, we are also

given the prime factorization of pi− 1. Show how to efficiently compute the
multiplicative order of any element α ∈ Z∗n.

Exercise 11.4. Suppose there is an efficient algorithm that takes as input a
positive integer n and an element α ∈ Z∗n, and computes the multiplicative
order of α. Show how to use this algorithm to be build an efficient integer
factoring algorithm.

11.2 Computing discrete logarithms Z∗p
In this section, we consider algorithms for computing the discrete logarithm
of α ∈ Z∗p to a given base γ. The algorithms we present here are, in the worst
case, exponential-time algorithms, and are by no means the best possible;
however, in some special cases, these algorithms are not so bad.

11.2.1 Brute-force search

Suppose that γ ∈ Z∗p generates a subgroup G of Z∗p of order q > 1 (not
necessarily prime), and we are given p, q, γ, and α ∈ G, and wish to compute
logγ α.

The simplest algorithm to solve the problem is brute-force search:



11.2 Computing discrete logarithms Z∗
p 271

β ← 1
i← 0
while β 6= α do

β ← β · γ
i← i+ 1

output i

This algorithm is clearly correct, and the main loop will always halt after
at most q iterations (assuming, as we are, that α ∈ G). So the total running
time is O(q len(p)2).

11.2.2 Baby step/giant step method

As above, suppose that γ ∈ Z∗p generates a subgroup G of Z∗p of order q > 1
(not necessarily prime), and we are given p, q, γ, and α ∈ G, and wish to
compute logγ α.

A faster algorithm than brute-force search is the baby step/giant step
method. It works as follows.

Let us choose an approximation m to q1/2. It does not have to be a very
good approximation—we just need m = Θ(q1/2). Also, let m′ = bq/mc, so
that m′ = Θ(q1/2) as well.

The idea is to compute all the values γi for i = 0, . . . ,m − 1 (the “baby
steps”) and to build a “lookup table” L that contains all the pairs (γi, i),
and that supports fast lookups on the first component of these pairs. That
is, given β ∈ Z∗p, we should be able to quickly determine if β = γi for some
i = 0, . . . ,m− 1, and if so, determine the value of i. Let us define L(β) := i

if β = γi for some i = 0, . . . ,m− 1; otherwise, define L(β) := −1.
Using an appropriate data structure, we can build the table L in time

O(q1/2 len(p)2) (just compute successive powers of γ, and insert them in
the table), and we can perform a lookup in time O(len(p)). One such data
structure is a radix tree (also called a search trie); other data structures may
be used (for example, a hash table or a binary search tree), but these may
yield slightly different running times for building the table and/or for table
lookup.

After building the lookup table, we execute the following procedure (the
“giant steps”):



272 Finding generators and discrete logarithms in Z∗
p

γ′ ← γ−m

β ← α, j ← 0, i← L(β)
while i = −1 do

β ← β · γ′, j ← j + 1, i← L(β)

x← jm+ i

output x

To analyze this procedure, suppose that α = γx with 0 ≤ x < q. Now, x
can be written in a unique way as x = vm + u, where u and v are integers
with 0 ≤ u < m and 0 ≤ v ≤ m′. In the jth loop iteration, for j = 0, 1, . . . ,
we have

β = αγ−mj = γ(v−j)m+u.

So we will detect i 6= −1 precisely when j = v, in which case i = u. Thus, the
output will be correct, and the total running time of the algorithm (for both
the “baby steps” and “giant steps” parts) is easily seen to be O(q1/2 len(p)2).

While this algorithm is much faster than brute-force search, it has the
drawback that it requires a table Θ(q1/2) elements of Zp. Of course, there
is a “time/space trade-off” here: by choosing m smaller, we get a table of
size O(m), but the running time will be proportional to O(q/m). In §11.2.5
below, we discuss an algorithm that runs (at least heuristically) in time
O(q1/2 len(q) len(p)2), but which requires space for only a constant number
of elements of Zp.

11.2.3 Groups of order qe

Suppose that γ ∈ Z∗p generates a subgroup G of Z∗p of order qe, where q > 1
and e ≥ 1, and we are given p, q, e, γ, and α ∈ G, and wish to compute
logγ α.

There is a simple algorithm that allows one to reduce this problem to the
problem of computing discrete logarithms in the subgroup of Z∗p of order q.

It is perhaps easiest to describe the algorithm recursively. The base case
is when e = 1, in which case, we use an algorithm for the subgroup of Z∗p of
order q. For this, we might employ the algorithm in §11.2.2, or if q is very
small, the algorithm in §11.2.1.

Suppose now that e > 1. We choose an integer f with 0 < f < e. Different
strategies for choosing f yield different algorithms—we discuss this below.
Suppose α = γx, where 0 ≤ x < qe. Then we can write x = qfv + u, where



11.2 Computing discrete logarithms Z∗
p 273

u and v are integers with 0 ≤ u < qf and 0 ≤ v < qe−f . Therefore,

αqe−f
= γqe−f u.

Note that γqe−f
has multiplicative order qf , and so if we recursively compute

the discrete logarithm of αqe−f
to the base γqe−f

, we obtain u.
Having obtained u, observe that

α/γu = γqf v.

Note also that γqf
has multiplicative order qe−f , and so if we recursively

compute the discrete logarithm of α/γu to the base γqf
, we obtain v, from

which we then compute x = qfv + u.

Let us put together the above ideas succinctly in a recursive procedure
RDL(p, q, e, γ, α) that runs as follows:

if e = 1 then
return logγ α // base case: use a different algorithm

else
select f ∈ {1, . . . , e− 1}
u← RDL(p, q, f, γqe−f

, αqe−f
) // 0 ≤ u < qf

v ← RDL(p, q, e− f, γqf
, α/γu) // 0 ≤ v < qe−f

return qfv + u

To analyze the running time of this recursive algorithm, note that the run-
ning time of the body of one recursive invocation (not counting the running
time of the recursive calls it makes) is O(e len(q) len(p)2). To calculate the
total running time, we have to sum up the running times of all the recursive
calls plus the running times of all the base cases.

Regardless of the strategy for choosing f , the total number of base case
invocations is e. Note that all the base cases compute discrete logarithms
to the base γqe−1

. Assuming we implement the base case using the baby
step/giant step algorithm in §11.2.2, the total running time for all the base
cases is therefore O(eq1/2 len(p)2).

The total running time for the recursion (not including the base case
computations) depends on the strategy used to choose the split f .

• If we always choose f = 1 or f = e− 1, then the total running time
for the recursion is O(e2 len(q) len(p)2). Note that if f = 1, then the
algorithm is essentially tail recursive, and so may be easily converted
to an iterative algorithm without the need for a stack.

• If we use a “balanced” divide-and-conquer strategy, choosing
f ≈ e/2, then the total running time of the recursion is



274 Finding generators and discrete logarithms in Z∗
p

O(e len(e) len(q) len(p)2). To see this, note that the depth of the
“recursion tree” is O(len(e)), while the running time per level of the
recursion tree is O(e len(q) len(p)2).

Assuming we use the faster, balanced recursion strategy, the total running
time, including both the recursion and base cases, is:

O((eq1/2 + e len(e) len(q)) · len(p)2).

11.2.4 Discrete logarithms in Z∗p
Suppose that we are given a prime p, along with the prime factorization

p− 1 =
r∏

i=1

qei
i ,

a generator γ for Z∗p, and α ∈ Z∗p. We wish to compute logγ α.
Suppose that α = γx, where 0 ≤ x < p−1. Then for i = 1, . . . , r, we have

α(p−1)/q
ei
i = γ(p−1)/q

ei
i x.

Note that γ(p−1)/q
ei
i has multiplicative order qei

i , and if xi is the discrete
logarithm of α(p−1)/q

ei
i to the base γ(p−1)/q

ei
i , then we have 0 ≤ xi < qei

i and
x ≡ xi (mod qei

i ).
Thus, if we compute the values x1, . . . , xr, using the algorithm in §11.2.3,

we can obtain x using the algorithm of the Chinese remainder theorem (see
Theorem 4.5). If we define q := max{q1, . . . , qr}, then the running time of
this algorithm will be bounded by q1/2 len(p)O(1).

We conclude that

the difficulty of computing discrete logarithms in Z∗p is deter-
mined by the size of the largest prime dividing p− 1.

11.2.5 A space-efficient square-root time algorithm

We present a more space-efficient alternative to the algorithm in §11.2.2, the
analysis of which we leave as a series of exercises for the reader.

The algorithm makes a somewhat heuristic assumption that we have a
function that “behaves” for all practical purposes like a random function.
Such functions can indeed be constructed using cryptographic techniques
under reasonable intractability assumptions; however, for the particular ap-
plication here, one can get by in practice with much simpler constructions.

Let p be a prime, q a prime dividing p − 1, γ an element of Z∗p that
generates a subgroup G of Z∗p of order q, and α ∈ G. Let F be a function



11.3 The Diffie–Hellman key establishment protocol 275

mapping elements of G to {0, . . . , q − 1}. Define H : G → G to be the
function that sends β to βαγF (β).

The algorithm runs as follows:

i← 1
x← 0, β ← α,
x′ ← F (β), β′ ← H(β)
while β 6= β′ do

x← (x+ F (β)) mod q, β ← H(β)
x′ ← (x′ + F (β′)) mod q, β′ ← H(β′)
x′ ← (x′ + F (β′)) mod q, β′ ← H(β′)
i← i+ 1

if i < q then
output (x− x′)i−1 mod q

else
output “fail”

To analyze this algorithm, let us define β1, β2, . . . , as follows: β1 := α and
for i > 1, βi := H(βi−1).

Exercise 11.5. Show that each time the main loop of the algorithm is
entered, we have β = βi = γxαi, and β′ = β2i = γx′α2i.

Exercise 11.6. Show that if the loop terminates with i < q, the value
output is equal to logγ α.

Exercise 11.7. Let j be the smallest index such that βj = βk for some
index k < j. Show that j ≤ q + 1 and that the loop terminates with i < j

(and in particular, i ≤ q).

Exercise 11.8. Assume that F is a random function, meaning that it is cho-
sen at random, uniformly from among all functions fromG into {0, . . . , q−1}.
Show that this implies that H is a random function, meaning that it is uni-
formly distributed over all functions from G into G.

Exercise 11.9. Assuming that F is a random function as in the previous
exercise, apply the result of Exercise 6.27 to conclude that the expected run-
ning time of the algorithm is O(q1/2 len(q) len(p)2), and that the probability
that the algorithm fails is exponentially small in q.

11.3 The Diffie–Hellman key establishment protocol

One of the main motivations for studying algorithms for computing discrete
logarithms is the relation between this problem and the problem of break-



276 Finding generators and discrete logarithms in Z∗
p

ing a protocol called the Diffie–Hellman key establishment protocol,
named after its inventors.

In this protocol, Alice and Bob need never to have talked to each other
before, but nevertheless, can establish a shared secret key that nobody else
can easily compute. To use this protocol, a third party must provide a
“telephone book,” which contains the following information:

• p, q, and γ, where p and q are primes with q | (p − 1), and γ is an
element generating a subgroup G of Z∗p of order q;

• an entry for each user, such as Alice or Bob, that contains the user’s
name, along with a “public key” for that user, which is an element
of the group G.

To use this system, Alice posts her public key in the telephone book,
which is of the form α = γx, where x ∈ {0, . . . , q − 1} is chosen by Alice at
random. The value of x is Alice’s “secret key,” which Alice never divulges
to anybody. Likewise, Bob posts his public key, which is of the form β = γy,
where y ∈ {0, . . . , q − 1} is chosen by Bob at random, and is his secret key.

To establish a shared key known only between them, Alice retrieves Bob’s
public key β from the telephone book, and computes κA := βx. Likewise,
Bob retrieves Alice’s public key α, and computes κB := αy. It is easy to see
that

κA = βx = (γy)x = γxy = (γx)y = αy = κB,

and hence Alice and Bob share the same secret key κ := κA = κB.
Using this shared secret key, they can then use standard methods for

encryption and message authentication to hold a secure conversation. We
shall not go any further into how this is done; rather, we briefly (and only
superficially) discuss some aspects of the security of the key establishment
protocol itself. Clearly, if an attacker obtains α and β from the telephone
book, and computes x = logγ α, then he can compute Alice and Bob’s shared
key as κ = βx — in fact, given x, an attacker can efficiently compute any
key shared between Alice and another user.

Thus, if this system is to be secure, it should be very difficult to com-
pute discrete logarithms. However, the assumption that computing discrete
logarithms is hard is not enough to guarantee security. Indeed, it is not
entirely inconceivable that the discrete logarithm problem is hard, and yet
the problem of computing κ from α and β is easy. The latter problem —
computing κ from α and β—is called the Diffie–Hellman problem.

As in the discussion of the RSA cryptosystem in §7.8, the reader is warned
that the above discussion about security is a bit of an oversimplification. A



11.3 The Diffie–Hellman key establishment protocol 277

complete discussion of all the security issues related to the above protocol
is beyond the scope of this text.

Note that in our presentation of the Diffie–Hellman protocol, we work with
a generator of a subgroup G of Z∗p of prime order, rather than a generator
for Z∗p. There are several reasons for doing this: one is that there are no
known discrete logarithm algorithms that are any more practical in G than
in Z∗p, provided the order q of G is sufficiently large; another is that by
working in G, the protocol becomes substantially more efficient. In typical
implementations, p is 1024 bits long, so as to protect against subexponential-
time algorithms such as those discussed later in §16.2, while q is 160 bits long,
which is enough to protect against the square-root-time algorithms discussed
in §11.2.2 and §11.2.5. The modular exponentiations in the protocol will run
several times faster using “short,” 160-bit exponents rather than “long,”
1024-bit exponents.

For the following exercise, we need the following notions from complexity
theory.

• We say problem A is deterministic poly-time reducible to prob-
lem B if there exists a deterministic algorithm R for solving problem
A that makes calls to a subroutine for problem B, where the running
time of R (not including the running time for the subroutine for B)
is polynomial in the input length.

• We say that A and B are deterministic poly-time equivalent if
A is deterministic poly-time reducible to B and B is deterministic
poly-time reducible to A.

Exercise 11.10. Consider the following problems.

(a) Given a prime p, a prime q that divides p − 1, an element γ ∈ Z∗p
generating a subgroup G of Z∗p of order q, and two elements α, β ∈ G,
compute γxy, where x := logγ α and y := logγ β. (This is just the
Diffie–Hellman problem.)

(b) Given a prime p, a prime q that divides p − 1, an element γ ∈ Z∗p
generating a subgroup G of Z∗p of order q, and an element α ∈ G,
compute γx2

, where x := logγ α.

(c) Given a prime p, a prime q that divides p − 1, an element γ ∈ Z∗p
generating a subgroup G of Z∗p of order q, and two elements α, β ∈ G,
with β 6= 1, compute γxy′ , where x := logγ α, y′ := y−1 mod q, and
y := logγ β.

(d) Given a prime p, a prime q that divides p − 1, an element γ ∈ Z∗p



278 Finding generators and discrete logarithms in Z∗
p

generating a subgroup G of Z∗p of order q, and an element α ∈ G,
with α 6= 1, compute γx′ , where x′ := x−1 mod q and x := logγ α.

Show that these problems are deterministic poly-time equivalent. Moreover,
your reductions should preserve the values of p, q, and γ; that is, if the
algorithm that reduces one problem to another takes as input an instance of
the former problem of the form (p, q, γ, . . .), it should invoke the subroutine
for the latter problem with inputs of the form (p, q, γ, . . .).

Exercise 11.11. Suppose there is a probabilistic algorithm A that takes
as input a prime p, a prime q that divides p − 1, and an element γ ∈ Z∗p
generating a subgroup G of Z∗p of order q. The algorithm also takes as input
α ∈ G. It outputs either “failure,” or logγ α. Furthermore, assume that
A runs in strict polynomial time, and that for all p, q, and γ of the above
form, and for randomly chosen α ∈ G, A succeeds in computing logγ α with
probability ε(p, q, γ). Here, the probability is taken over the random choice
of α, as well as the random choices made during the execution of A. Show
how to use A to construct another probabilistic algorithm A′ that takes as
input p, q, and γ as above, as well as α ∈ G, runs in expected polynomial
time, and that satisfies the following property:

if ε(p, q, γ) ≥ 0.001, then for all α ∈ G, A′ computes logγ α

with probability at least 0.999.

The algorithm A′ in the previous exercise is another example of a random
self-reduction (see discussion following Exercise 7.27).

Exercise 11.12. Let p be a prime, q a prime that divides p− 1, γ ∈ Z∗p an
element that generates a subgroup G of Z∗p of order q, and α ∈ G. For δ ∈ G,
a representation of δ with respect to γ and α is a pair of integers (r, s),
with 0 ≤ r < q and 0 ≤ s < q, such that γrαs = δ.

(a) Show that for any δ ∈ G, there are precisely q representations (r, s)
of δ with respect to γ and α, and among these, there is precisely one
with s = 0.

(b) Show that given a representation (r, s) of 1 with respect to γ and α

such that s 6= 0, we can efficiently compute logγ α.

(c) Show that given any δ ∈ G, along with any two distinct representa-
tions of δ with respect to γ and α, we can efficiently compute logγ α.

(d) Suppose we are given access to an “oracle” that, when presented with
any δ ∈ G, tells us some representation of δ with respect to γ and α.
Show how to use this oracle to efficiently compute logγ α.



11.3 The Diffie–Hellman key establishment protocol 279

The following two exercises examine the danger of the use of “short”
exponents in discrete logarithm based cryptographic schemes that do not
work with a group of prime order.

Exercise 11.13. Let p be a prime and let p − 1 = qe1
1 · · · qer

r be the prime
factorization of p − 1. Let γ be a generator for Z∗p. Let X,Y be positive
numbers. Let Q be the product of all the prime powers qei

i with qi ≤ Y .
Suppose you are given p, the primes qi dividing p − 1 with qi ≤ Y , along
with γ and an element α of Z∗p. Assuming that x := logγ α < X, show how
to compute x in time

(Y 1/2 + (X/Q)1/2) · len(p)O(1).

Exercise 11.14. Continuing with the previous exercise, let Q′ be the prod-
uct of all the primes qi dividing p − 1 with qi ≤ Y . Note that Q′ | Q. The
goal of this exercise is to heuristically estimate the expected value of logQ′,
assuming p is a large, random prime. The heuristic part is this: we shall
assume that for any prime q ≤ Y , the probability that q divides p − 1 for
a randomly chosen “large” prime p is ∼ 1/q. Under this assumption, show
that

E[logQ′] ∼ log Y.

The results of the previous two exercises caution against the use of “short”
exponents in cryptographic schemes based on the discrete logarithm problem
for Z∗p. Indeed, suppose that p is a random 1024-bit prime, and that for
reasons of efficiency, one chooses X ≈ 2160, thinking that a method such
as the baby step/giant step method would require ≈ 280 steps to recover x.
However, if we choose Y ≈ 280, then we have reason to expect Q to be at
least about 280, in which case X/Q is at most about 280, and so we can in
fact recover x in roughly 240 steps, which may be a feasible number of steps,
whereas 280 steps may not be. Of course, none of these issues arise if one
works in a subgroup of Z∗p of large prime order, which is the recommended
practice.

An interesting fact about the Diffie–Hellman problem is that there is no
known efficient algorithm to recognize a solution to the problem. Some cryp-
tographic protocols actually rely on the apparent difficulty of this decision
problem, which is called the decisional Diffie–Hellman problem. The
following three exercises develop a random self-reducibility property for this
decision problem.

Exercise 11.15. Let p be a prime, q a prime dividing p − 1, and γ an



280 Finding generators and discrete logarithms in Z∗
p

element of Z∗p that generates a subgroup G of order q. Let α ∈ G, and let H
be the subgroup of G×G generated by (γ, α). Let γ̃, α̃ be arbitrary elements
of G, and define the map

ρ : Zq × Zq → G×G
([r]q, [s]q) 7→ (γrγ̃s, αrα̃s).

Show that the definition of ρ is unambiguous, that ρ is a group homomor-
phism, and that

• if (γ̃, α̃) ∈ H, then img(ρ) = H, and

• if (γ̃, α̃) /∈ H, then img(ρ) = G×G.

Exercise 11.16. For p, q, γ as in the previous exercise, let Dp,q,γ consist
of all triples of the form (γx, γy, γxy), and let Rp,q,γ consist of all triples of
the form (γx, γy, γz). Using the result from the previous exercise, design a
probabilistic algorithm that runs in expected polynomial time, and that on
input p, q, γ, along with a triple Γ ∈ Rp,q,γ , outputs a triple Γ∗ ∈ Rp,q,γ such
that

• if Γ ∈ Dp,q,γ , then Γ∗ is uniformly distributed over Dp,q,γ , and

• if Γ /∈ Dp,q,γ , then Γ∗ is uniformly distributed over Rp,q,γ .

Exercise 11.17. Suppose that A is a probabilistic algorithm that takes
as input p, q, γ as in the previous exercise, along a triple Γ∗ ∈ Rp,q,γ , and
outputs either 0 or 1. Furthermore, assume that A runs in strict polynomial
time. Define two random variables, Xp,q,γ and Yp,q,γ , as follows:

• Xp,q,γ is defined to be the output of A on input p, q, γ, and Γ∗, where
Γ∗ is uniformly distributed over Dp,q,γ , and

• Yp,q,γ is defined to be the output of A on input p, q, γ, and Γ∗, where
Γ∗ is uniformly distributed over Rp,q,γ .

In both cases, the value of the random variable is determined by the random
choice of Γ∗, as well as the random choices made by the algorithm. Define

ε(p, q, γ) :=
∣∣∣∣P[Xp,q,γ = 1]− P[Yp,q,γ = 1]

∣∣∣∣.
Using the result of the previous exercise, show how to use A to design a
probabilistic, expected polynomial-time algorithm that takes as input p, q, γ
as above, along with Γ ∈ Rp,q,γ , and outputs either “yes” or “no,” so that

if ε(p, q, γ) ≥ 0.001, then for all Γ ∈ Rp,q,γ , the probability
that A′ correctly determines whether Γ ∈ Dp,q,γ is at least
0.999.



11.4 Notes 281

Hint: use the Chernoff bound.

The following exercise demonstrates that distinguishing “Diffie–Hellman
triples” from “random triples” is hard only if the order of the underlying
group is not divisible by any small primes, which is another reason we have
chosen to work with groups of large prime order.

Exercise 11.18. Assume the notation of the previous exercise, but let us
drop the restriction that q is prime. Design and analyze a deterministic
algorithm A that takes inputs p, q, γ and Γ∗ ∈ Rp,q,γ , that outputs 0 or 1,
and that satisfies the following property: if t is the smallest prime dividing
q, then A runs in time (t+ len(p))O(1), and the “distinguishing advantage”
ε(p, q, γ) for A on inputs p, q, γ is at least 1/t.

11.4 Notes

The probabilistic algorithm in §11.1 for finding a generator for Z∗p can be
made deterministic under a generalization of the Riemann hypothesis. In-
deed, as discussed in §10.7, under such a hypothesis, Bach’s result [10] im-
plies that for each prime q | (p − 1), the least positive integer a such that
[a]p ∈ Z∗p \ (Z∗p)q is at most 2 log p.

Related to the problem of constructing a generator for Z∗p is the question
of how big is the smallest positive integer g such that [g]p is a generator
for Z∗p; that is, how big is the smallest (positive) primitive root modulo p.
The best bounds on the least primitive root are also obtained using the
same generalization of the Riemann hypothesis mentioned above. Under
this hypothesis, Wang [98] showed that the least primitive root modulo p is
O(r6 len(p)2), where r is the number of distinct prime divisors of p−1. Shoup
[90] improved Wang’s bound to O(r4 len(r)4 len(p)2) by adapting a result of
Iwaniec [48, 49] and applying it to Wang’s proof. The best unconditional
bound on the smallest primitive root modulo p is p1/4+o(1) (this bound is
also in Wang [98]). Of course, just because there exists a small primitive
root, there is no known way to efficiently recognize a primitive root modulo
p without knowing the prime factorization of p− 1.

As we already mentioned, all of the algorithms presented in this chapter
are completely “generic,” in the sense that they work in any finite cyclic
group — we really did not exploit any properties about Z∗p other than the
fact that it is a cyclic group. In fact, as far as such “generic” algorithms
go, the algorithms presented here for discrete logarithms are optimal [67,
93]. However, there are faster, “non-generic” algorithms (though still not



282 Finding generators and discrete logarithms in Z∗
p

polynomial time) for discrete logarithms in Z∗p. We shall examine one such
algorithm later, in Chapter 16.

The “baby step/giant step” algorithm in §11.2.2 is due to Shanks [86].
See, for example, the book by Cormen, Leiserson, Rivest, and Stein [29]
for appropriate data structures to implement the lookup table used in that
algorithm. In particular, see Problem 12-2 in [29] for a brief introduction
to radix trees, which is the data structure that yields the best running time
(at least in principle) for our application.

The algorithms in §11.2.3 and §11.2.4 are variants of an algorithm pub-
lished by Pohlig and Hellman [71]. See Chapter 4 of [29] for details on how
one analyzes recursive algorithms, such as the one presented in §11.2.3; in
particular, Section 4.2 in [29] discusses in detail the notion of a recursion
tree.

The algorithm in §11.2.5 is a variant of an algorithm of Pollard [72]; in
fact, Pollard’s algorithm is a bit more efficient than the one presented here,
but the analysis of its running time depends on stronger heuristics. Pol-
lard’s paper also describes an algorithm for computing discrete logarithms
that lie in a restricted interval—if the interval has width w, this algorithm
runs (heuristically) in time w1/2 len(p)O(1), and requires space for O(len(w))
elements of Zp. This algorithm is useful in reducing the space requirement
for the algorithm of Exercise 11.13.

The key establishment protocol in §11.3 is from Diffie and Hellman [33].
That paper initiated the study of public key cryptography, which has
proved to be a very rich field of research.

Exercises 11.13 and 11.14 are based on van Oorschot and Wiener [70].
For more on the decisional Diffie–Hellman assumption, see Boneh [18].


